
Scaling Concurrent
Applications on the
Java Platform

Java Platform Group, Oracle
Ron Pressler

Copyright © 2020 Oracle and/or its affiliates.

The following is intended to outline our general product direction. It is intended for information purposes
only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code,
or functionality, and should not be relied upon in making purchasing decisions. The development,
release, timing, and pricing of any features or functionality described for Oracle’s products may change
and remains at the sole discretion of Oracle Corporation.

Statements in this presentation relating to Oracle’s future plans, expectations, beliefs, intentions and
prospects are “forward-looking statements” and are subject to material risks and uncertainties. A detailed
discussion of these factors and other risks that affect our business is contained in Oracle’s Securities and
Exchange Commission (SEC) filings, including our most recent reports on Form 10-K and Form 10-Q
under the heading “Risk Factors.” These filings are available on the SEC’s website or on Oracle’s website
at http://www.oracle.com/investor. All information in this presentation is current as of September 2019
and Oracle undertakes no duty to update any statement in light of new information or future events.

Safe Harbor

Copyright © 2020 Oracle and/or its affiliates.

http://www.oracle.com/investor
http://www.oracle.com/investor

Copyright © 2020 Oracle and/or its affiliates.

L = λW

Concurrency

• Exceptions

• Debugger

• Profiler (JFR)

Threads in Java

Threads in Java
• java.lang.Thread

• One implementation: OS threads

• OS threads support all languages.

• RAM-heavy — megabyte-scale; page granularity; can’t uncommit.

• Task-switching requires switch to kernel.

• Scheduling is a compromise for all usages. Bad cache locality.

Copyright © 2020 Oracle and/or its affiliates.

• A costly resource

Synchronous

• Easy to read

• Fits well with language (control flow, exceptions)

• Fits well with tooling (debuggers, profilers)

But
Programmer 😀

OS / Hardware ☹

Copyright © 2020 Oracle and/or its affiliates.

Reuse with Thread Pools

• Return at end

• Leaking ThreadLocals

• Complex cancellation (interruption)

Reuse with Thread Pools

• Return at end

• Leaking ThreadLocals

• Complex cancellation (interruption)

• Return at wait

• Incompatible APIs

• Lost context

Reuse with Thread Pools

• Hard to read

• Lost context: Very hard to debug and profile

• Intrusive; nearly impossible to migrate

Asynchronous

• Scalable

But

Programmer ☹

OS / Hardware 😀

Copyright © 2020 Oracle and/or its affiliates.

simple
less scalable

scalable,
complex,
non-interoperable,
hard to debug/profile

OR

SYNC

Java Blue

ASYNC

Programmer 😀

OS / Hardware ☹

Programmer ☹

OS / Hardware 😀

Copyright © 2020 Oracle and/or its affiliates.

12

Codes Like Sync, Works Like Async

App

Connections

Programmer 😀

OS / Hardware 😀

Copyright © 2020 Oracle and/or its affiliates.

“Rethink threads.”
– The Architects

Copyright © 2020 Oracle and/or its affiliates.

• Forward Compatibility: we want
existing code to enjoy new functionality

• We want to correct past mistakes and
start afresh

“We must carefully balance  
 conservation and innovation”

— Mark Reinhold

“The solutions of yesterday 
 are the problems of today”

— Brian Goetz
Copyright © 2020 Oracle and/or its affiliates.

• The use of Thread.currentThread() and ThreadLocal is pervasive.
Without support, or with changed behaviour, little existing code would run

• Ever since Java 5 we’ve encouraged people not to use the Thread API
directly anyway. People use Executor and Future, so the baggage and
past API mistakes are largely inconspicuous.

• Thread could be cleaned up by removing long-deprecated methods.

• Realised we could drastically reduce the footprint of Thread.

Copyright © 2020 Oracle and/or its affiliates.

Threads in Java

• java.lang.Thread

• The Java runtime is well positioned to implement threads.

• Resizable stacks (possible b/c we only need to support Java).

• Task-switching in user-mode, w/ VM support (continuations).

• Pluggable schedulers, default optimised for transactions.

• Can’t support blocking from native code.

Threads in Java

Copyright © 2020 Oracle and/or its affiliates.

virtual threads

“carrier” heavyweight/kernel threads managed by scheduler

Copyright © 2020 Oracle and/or its affiliates.

Java Concurrency, Then and Now

Green Platform Virtual

Copyright © 2020 Oracle and/or its affiliates.

200-300B metadata
Pay-as-you-go stack

>2KB metadata
1MB stack

1-10µs ~200ns

Copyright © 2020 Oracle and/or its affiliates.

Thread t = Thread.startVirtualThread(() -> {
 System.out.println("Hello, Loom!");
});

Thread t = Thread.builder().virtual().task(() -> { ... }).build();

Thread t = Thread.builder().virtual().task(() -> { ... }).start();

ThreadFactory factory = Thread.builder().virtual().factory();

Virtual Threads

Copyright © 2020 Oracle and/or its affiliates.

We’re “just” adding another, more
scalable, implementation of threads,
but this has big consequences on the
code we can write.

Copyright © 2020 Oracle and/or its affiliates.

Why not language-level coroutines?

• Coroutines are syntactic; threads are dynamic — a code
element is either a coroutine or a regular method.

• The coroutine designation is viral, just like async code.

• Coroutines require that every API is marked for use by coroutines
or for use by ordinary methods. Existing APIs can’t be migrated.

Copyright © 2020 Oracle and/or its affiliates.

Structured Concurrency

• Timeouts and cancellation for humans

• Notes on structured concurrency, or: Go statement considered harmful

Martin Sústrik (libdill, C)

• Structured Concurrency

• Update on Structured Concurrency

Nathaniel J. Smith (Trio, Python) © Martin Sústrik

Copyright © 2020 Oracle and/or its affiliates.

https://vorpus.org/blog/timeouts-and-cancellation-for-humans/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/timeouts-and-cancellation-for-humans/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
http://250bpm.com/blog:71
http://250bpm.com/blog:137
http://250bpm.com/blog:71
http://250bpm.com/blog:137

Structured Concurrency

Copyright © 2020 Oracle and/or its affiliates.

Structured — the runtime
behaviour mirrors the structure of
the code, arranged in blocks.

The structure of the code shows
where control starts and where it
ends.

Copyright © 2020 Oracle and/or its affiliates.

ThreadFactory factory = Thread.builder().virtual().factory();
try (var executor = Executors.newThreadExecutor(factory)) {
 executor.submit(task1);
 executor.submit(task2);
}

Structured Concurrency

Copyright © 2020 Oracle and/or its affiliates.

Structured Concurrency: Deadlines

ThreadFactory factory = Thread.builder().virtual().factory();
try (var executor = Executors.newThreadExecutor(factory)
 .withDeadline(Instant.now().plusSeconds(30))) {
 executor.submit(task1);
 executor.submit(task2);
}

Copyright © 2020 Oracle and/or its affiliates.

Structured Concurrency

try (var e = Executors.newVirtualThreadExecutor()) {
 String first = e.invokeAny(List.of(
 () -> "a",
 () -> { throw new IOException("too lazy for work"); },
 () -> "b"
));
 System.out.println("one result: " + first);
} catch (ExecutionException ee) {

 System.out.println("¯_(ツ)_/¯");
}

Copyright © 2020 Oracle and/or its affiliates.

• ThreadLocal variables, context ClassLoader,
InheritableThreadLocal, AccessControlContext

• Don’t play well with thread pools

• Mutable, and unstructured
• Dynamic — Not that fast

Thread Locals

Copyright © 2020 Oracle and/or its affiliates.

Scope Variables (speculated)

static final Scoped<Integer> s1 = Scoped.forType(Integer.class);
static final Scoped<String> s2 = Scoped.forType(String.class);

try (s1.bind(1);
 s2.bind("hello")) {
 System.out.println(foo()); // prints hello1
}

String foo() {
 return s2.get() + s1.get();
}

Copyright © 2020 Oracle and/or its affiliates.

Scope Variables (speculated)

try (s1.bind(1); s2.bind("hello")) {
 System.out.println(foo()); // prints hello1

 try (s1.bind(2); s2.bind("goodbye")) {
 System.out.println(foo()); // prints goodbye2
 }

 System.out.println(foo()); // prints hello1
}

Copyright © 2020 Oracle and/or its affiliates.

Scope Variables (speculated)

static final Scoped<Integer> s1 = Scoped.forType(Integer.class);
static final Scoped<String> s2 = Scoped.forType(String.class);

try (s1.bind(99);
 s2.bind(“hello")) {

 try (var scope = Executors.newVirtualThreadExecutor()) {
 scope.submit(task1);
 scope.submit(task2);
 }

}

Copyright © 2020 Oracle and/or its affiliates.

• Scope locals expected to supplant many uses of ThreadLocal

• Other require “processor locals”

Copyright © 2020 Oracle and/or its affiliates.

Status
• java.util.concurrent works, but requires re-tuning.

• Thread.sleep

• java.net.Socket/ServerSocket (JDK 13)

• java.nio.channels.SocketChannel and friends (JDK 11)

• JSSE implementation of TLS

• AccessController.doPrivileged w/o native frame (JDK 12)

• java.lang.reflect.Method.invoke requires more work

• Monitors/Object.wait() pin thread (temporary)

• Native frames pin thread

• Debugger support

• Initial JFR support

Copyright © 2020 Oracle and/or its affiliates.

• java.net.InetAddress

• Console I/O

• File I/O ?

• Thread dumps

• Channels ?

Further work

Copyright © 2020 Oracle and/or its affiliates.

Q & A
Mailing list: loom-dev@openjdk.java.net  

Repo: https://github.com/openjdk/loom 

Early Access: http://jdk.java.net/loom/

Copyright © 2020 Oracle and/or its affiliates.

